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Abstract

This study presents a framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization
(VIDEO). The VIDEO framework allows users to visually navigate large multi-objective solution sets while aiding decision makers in identi-
fying one or more optimal designs. Specifically, the interactive visualization framework is intended to provide an innovative exploration tool for
high-order Pareto-optimal solution sets (i.e., solution sets for three or more objectives). The framework is demonstrated for a long-term ground-
water monitoring (LTM) application in which users can explore and visualize tradeoffs for up to four design objectives, simultaneously. Inter-
active functionality within the framework allows the user to select solutions within the objective space and visualize the corresponding
monitoring plan’s performance in the design space. This functionality provides the user with a holistic picture of the information provided
by a particular solution, ultimately allowing them to make a more informed decision. In addition, the ease with which the framework allows
users to navigate and compare solutions as well as design tradeoffs leads to a time efficient analysis, even when there are thousands of potential
solutions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of this study is to demonstrate the need for and
value of coupling advanced visualization and multi-objective
evolutionary algorithms to enhance environmental applica-
tions. In support of this goal, the VIDEO (Visually Interactive
Decision-making and Design using Evolutionary Multi-objec-
tive Optimization) framework is a new software that enables
decision makers to explore large multi-objective solution sets
while aiding in the selection of one or more optimal designs.
Development of the VIDEO framework was motivated by the
increasing emphasis of environmental systems research on
multi-objective methods (Chankong and Haimes, 1983; Keeney
and Raiffa, 1993; Haimes, 1998; Coello Coello et al., 2002).

Recent innovations in multi-objective evolutionary algorithms
(MOEAs) have served to catalyze the development of a broad
suite of multi-objective design and decision support methodo-
logies within the environmental and water resources literature
(Horn and Nafpliotis, 1993; Ritzel et al., 1994; Cieniawski
et al., 1995; Halhal et al., 1997; Loughlin et al., 2000; Reed
et al., 2001; Erickson et al., 2002; Reed and Minsker, 2004;
Bekele and Nicklow, 2005; Farmani et al., 2005; Tang et al.,
2007). MOEA’s population-based search allows users to find
entire tradeoff (or Pareto) surfaces using a single algorithm
run for large, complex problem spaces (Goldberg, 1989;
Salomon, 1998; Back et al., 2000).

In general, optimality for multiple objectives is defined by the
set of solutions that are globally (locally) better than all other so-
lutions in at least one objective and are termed Pareto-optimal
(non-dominated) solutions (Pareto, 1896). The Pareto-optimal
front (or non-dominated front) is obtained by plotting these so-
lutions according to their objective values yielding an N� 1 di-
mensional surface where N is equal to the total number of
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objectives. High-order Pareto optimization problems as defined
by Reed and Minsker (2004) have three or more objectives. They
have also been termed ‘‘many-objective’’ problems within the
operations research (OR) literature (Fleming et al., 2005). There
is a growing body of literature exploring the challenges and ben-
efits associated with solving high-order Pareto optimization
problems (Farina and Amato, 2002; Kumar and Ranjithan,
2002; Reed and Minsker, 2004; Bekele and Nicklow, 2005;
Fleming et al., 2005; Tang et al., 2006). Please note that in this
paper, we use the general term ‘‘Pareto-optimal’’ instead of
‘‘non-dominated’’ when describing approximate multi-objec-
tive solution sets because the term is generally appropriate for
the best known solution sets for an application.

Although our ability to solve high-order Pareto optimization
problems using techniques such as MOEAs reflects more recent
computational advances, the systems analysis literature from the
past 30 years has recognized that design problems often have
several conflicting objectives, especially in the environmental
arena (Haimes, 1998). As highlighted by Haimes (1998, pp.
17e18), modern systems research has its origins dating back
to Wiener’s (1961) text Cybernetics, which successfully fore-
casted a myriad of technological advances that have shaped hu-
manecomputer interaction as well as design/decision-making
processes. Classical multi-objective decision-making method-
ologies (Chankong and Haimes, 1983; de Neufville, 1990)
have generally focused on transformation methods that com-
mensurate multiple objectives into new formulations that are
amendable to solution using single objective optimization algo-
rithms. MOEAs represent a break from traditional multi-criteria
operations research where it is no longer necessary to transform
or commensurate problem structures into single objective for-
mulations and instead new decision support tools can focus on
the structure and content of Pareto surfaces.

This paper seeks to: (1) affirm the need and value of com-
bining interactive visualization with high-order Pareto optimi-
zation for improved a posteriori decision-making (see Section
2.1) and (2) provide a specific demonstration of the VIDEO
framework within an illustrative long-term groundwater mon-
itoring (LTM) design application (see Section 2.2). This study
builds on Reed and Minsker (2004) by contributing a visualiza-
tion framework tailored specifically to many-objective LTM
applications. LTM design has long been recognized to have
‘‘many objectives’’ (Moss, 1979) and is an excellent example
application for showing that visualization combined with high-
order multi-objective solution sets can facilitate discovery and
negotiation in the design and decision-making process (Reed
and Minsker, 2004). Our use of the terms discovery and nego-
tiation is motivated by the potential of high-order multi-objec-
tive solution sets to generate alternatives that capture a broad
suite of system behaviors relevant to both modeled and un-
modeled objectives (Loughlin et al., 2001), helping decision
makers to ‘‘discover’’ system dependencies and/or tradeoffs
and exploit this information in the negotiated selection of a so-
lution (Castelletti and Soncini-Sessa, 2006).

In the remainder of the paper, Section 2 provides a more de-
tailed discussion of a posteriori decision-making, the VIDEO
framework’s components, and the LTM application being used

to demonstrate the framework. Section 3 provides illustrative
results for the LTM case study demonstrating how the VIDEO
framework facilitates exploration of tradeoffs and negotiated
focus on specific solutions. Sections 4 and 5 discuss the impli-
cations of using interactive visualization to facilitate a posteri-
ori decision-making.

2. Methodology

2.1. An overview of a priori and a posteriori multi-objective
methods

A priori methods (Coello Coello et al., 2002) seek to model decision maker

preference before searching for designs/decisions. A classic example of an a pri-

ori method is the ‘‘normative’’ decision-making methodology developed by

Keeney and Raiffa (1976, 1993) termed multi-attribute utility analysis

(MAUA). MAUA requires extensive surveys of decision maker preferences prior

to searching for potential system designs. In MAUA, decision maker surveys

must be designed carefully to assure methodological assumptions are satisfied

[i.e., preferential and utility independence (for more details see de Neufville,

1990; Keeney and Raiffa, 1993)]. MAUA is an example of a transformative

method where the original decision objectives are analytically represented

within a utility function that can be optimized using traditional single objective

algorithms. In MAUA, all search and decision-making is then in reference to util-

ity. a priori methods such as MAUA have been criticized because they do not con-

dition decision maker preference on potential alternatives, they suffer from

decision maker contradictions (or intransitivity), and utility representations of

preference are non-unique for groups (i.e., Arrow’s Paradox, Arrow, 1963).

In contrast to a priori methods, the VIDEO framework represents an a pos-

teriori decision tool where decision maker preferences for alternatives are ex-

pressed after non-dominated or Pareto-optimal alternatives have been

identified. In this process, all solutions are initially assumed to have equal

preference during the search process. Decision maker preferences are then ex-

pressed in the exploration tradeoffs and selection of design solutions. a poste-

riori decision tools have been criticized in the OR literature due to (1) the

mathematical complexity of finding tradeoff solutions and (2) the contention

that large solution sets tend to overwhelm/confuse decision makers while pro-

viding limited insights into their design preferences (Haimes, 1998; Coello

Coello et al., 2002; Zeleny, 2005).

In reference to the criticisms of a posteriori decision-making methods,

MOEAs have significantly enhanced our ability to search for and quantify

large multi-objective solution sets in the environmental area (Bekele and

Nicklow, 2005; Kollat and Reed, 2006; Reed et al., 2007; Tang et al.,

2007). Moreover, the second criticism’s implication that large solution sets

overwhelm decision makers assumes that system expertise and visualizations

have limited value. Multi-objective engineering and environmental applica-

tions represent complex systems that can be meaningfully visualized in space

and/or time. Exploring tradeoffs and visualizing system performance can be

useful in two spaces: (1) objective space and (2) design/system space. As an

example, a pollution remediation system can have a suite of objectives (min-

imize cost, maximize reliability, maximize resiliency, minimize redundancy,

etc.) each of which shapes the potential real-world system’s spatiotemporal

performance. There is an increasing number of studies demonstrating that vi-

sualization combined with optimization can promote design innovations and

provide decision makers with an improved understanding of system behaviors

(Mecham, 1997; Balling, 1999; Winer and Bloebaum, 2002; Stump et al.,

2003; Reed and Minsker, 2004; Fleming et al., 2005). In the context of this

prior work, the VIDEO framework contributes a highly interactive environ-

ment for exploring LTM design tradeoffs for up to four objectives and detailed

analysis of their consequences in the resultant design space.

2.2. VIDEO framework components

2.2.1. Overview of framework

The core of the VIDEO framework has been developed using the Python

programming language. Python is a dynamic, object-oriented scripting
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language, which integrates easily with other languages, and is virtually plat-

form independent (Chun, 2006). Additionally, Python has a large number of

graphical user interface (GUI) frameworks, including Tkinter, PyQt, and

wxPython. The VIDEO framework has been developed using Tkinter (Py-

thon’s standard GUI package), which is built on top of Tcl/Tk and is portable

across Windows, Unix, and Mac platforms (Flynt, 2003). Aside from Py-

thon’s ease-of-use and GUI development capabilities, it allows easy integra-

tion with other, lower level (i.e., faster) languages such as C and Cþþ. The

VIDEO framework takes advantage of this capability by utilizing the Visual-

ization ToolKit (VTK) (Schroeder, 2001) which is rooted in Cþþ for the vi-

sualization components of the framework, and a spatial interpolator (KT3D)

(Deutsch and Journel, 1998) that has been translated from Fortran to C by the

authors. The Visualization ToolKit is an open-source software system devel-

oped for three-dimensional visualization and image processing developed in

Cþþ and wrapped with various other common programming languages

(namely Java, Python, and Tcl/Tk). One of the main strengths of VTK is

its fast visualization rendering and excellent interaction capabilities. KT3D

has been utilized in the initial version of the VIDEO framework to provide

high quality (interpolation) data sets. KT3D has been coded in C and is

called by Python to perform the required spatial interpolation on-the-fly dur-

ing interaction events such as when a user is selecting and comparing solu-

tions. When Pareto-optimal solution sets are large with potentially thousands

of solutions (as is the case with the LTM design problem explored in this

study), it is more efficient for gridded spatial data sets to be generated on-

demand.

The VIDEO decision-making software is divided into two primary compo-

nents, an objective space window and a decision space window (see Fig. 1).

The objective space window contains the visualization data associated with

the design objectives of the problem, as well as tools that allow the user to

easily manipulate how objective tradeoffs can be visualized. For example,

the user can quickly change which of the objectives are displayed, how they

are displayed (i.e., plotting axes and color representations) as well as change

the display precision of the solutions, and the plotting limits. The decision

space component of the software displays the design space associated with

the problem and is therefore more problem specific. The decision space com-

ponent is linked with the objective space component, allowing the user to se-

lect specific solutions from within the objective space, and see what these

solutions actually represent in terms of a design. Probing tools are provided

within the decision space component to allow the user to explore the implica-

tions associated with the tradeoffs between their design objectives. These com-

ponents and tools are discussed in more detail in Section 2.2.3.

2.2.2. Generation of multi-objective solution sets

The VIDEO framework is an a posteriori decision support tool that has

been designed with the intent of promoting exploration of multi-objective so-

lution sets generated by multi-objective evolutionary algorithms. However, any

solution set ranging from lower quality initial approximations generated using

Monte Carlo analysis to true Pareto-optimal solutions sets generated through

enumeration of every potential solution can be explored within the software.

In this study, a 25-well LTM application is used as the test case to demonstrate

the VIDEO framework (Kollat and Reed, 2006, 2007). The authors have suc-

cessfully obtained high quality solution sets for the 25-well LTM application

using the Epsilon-Non-dominated Sorted Genetic Algorithm II (3-NSGAII)

(Kollat and Reed, 2007; Tang et al., 2007), which has been shown to perform

as well or better than other top-performing MOEAs (Kollat and Reed, 2006;

Tang et al., 2006). These previous studies have motivated our interest in ad-

vancing a posteriori decision-making using visualization in combination

with large Pareto-optimal sets.

Fig. 1. Overview of VIDEO decision-making software. The interface is divided into an objective space window, a design space window, and a set of tools asso-

ciated with each of these windows.
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2.2.3. Interactive visualization

2.2.3.1. Objective space visualization. The objective space component of the

VIDEO framework currently allows the user to visualize up to four design ob-

jectives simultaneously. Up to three design objectives can be plotted on the

spatial coordinate axes (X, Y, and Z ), and the fourth objective can be portrayed

using color. Each potential solution is represented as a spherical glyph posi-

tioned at the appropriate coordinates and is colored based on a fourth objec-

tive. Future versions of the software may allow for visualizing additional

objectives through the manipulation of glyph size, shape, or orientation (Ball-

ing, 1999). Located immediately above the objective space window are a set of

radio buttons that allow the user to change which of the objectives are plotted

on each of the coordinate axes and which objective is represented using glyph

color. These radio buttons are arranged in a grid fashion with each row of the

grid representing the X, Y, Z, and color axis, respectively, and each column of

the grid representing design objectives 1-4. An additional ‘‘off’’ column is pro-

vided to allow the user to turn one or more plotting axes off. This GUI design

allows the user to efficiently explore the wide range of plotting possibilities

within the objective space, ultimately enhancing their understanding of the

problem. For example, by specifying only two plotting axes and switching

the others off, two objective subsets of the larger four objectives problem

can be plotted to quickly identify tradeoffs between objectives. As another ex-

ample, glyph color can be utilized as a third objective while two other objec-

tives are plotted on the spatial coordinates, possibly providing enhanced

insight into the many relationships that may exist between the design objec-

tives. Alternative plotting techniques are demonstrated in more detail for the

four-objective LTM test case in Section 3.1.

2.2.3.2. Objective space navigation. The VIDEO framework provides the user

with two means of focusing on areas of interest within the objective space. The

first is a set of text boxes associated with each of the plotting axes (X, Y, Z, and

color), which allows the user to numerically specify the plotting limits of each

objective. This is useful if the user has problem specific knowledge that allows

them to specify thresholds of interest for each of the design objectives. In ad-

dition, an interactive tool has been included that allows the user to dynamically

resize a plotting box within the actual objective space window in order to focus

on sub-regions of interest quickly and efficiently. This interactive tool can be

instantiated by pressing ‘‘i’’ while the objective space rendering window is ac-

tive, or by selecting ‘‘Interactive Limits Adjustment’’ under the ‘‘Objective

Space Tools’’ menu.

2.2.3.3. Objective space thinning. Previous studies have emphasized the need

for understanding objective precision requirements in multi-objective optimi-

zation (Laumanns et al., 2002; Kollat and Reed, 2007; Reed et al., 2007). For

example, should the concentration estimates of a system be quantified in parts

per trillion (ppt), or is parts per million (ppm) a sufficient level of precision?

Design objective precision specification has been added into the VIDEO

framework so that high resolution Pareto-optimal solution sets can be

‘‘thinned’’ based on the decision maker’s precision requirements. The VIDEO

framework uses 3-dominance (Laumanns et al., 2002) to reduce the precision

of the Pareto-optimal solution set. In this approach, 3 values reflecting the re-

quired precision for each design objective are specified by the decision maker.

Non-domination sorting is then performed based on the reduced precision

rather than the full precision, ultimately resulting in a reduced precision set.

For a detailed discussion and analysis of 3-dominance applied to a LTM prob-

lem and its implications for reducing computational demand, please refer to

a recent study by Kollat and Reed (2007). Within the VIDEO framework, 3-

dominance values can be specified for each objective, and the solutions dis-

played in the objective space will be updated to reflect the decision maker’s

required precision.

2.2.3.4. Interactive solution selection. To facilitate comparison of Pareto-opti-

mal solutions, the user is provided with the ability to manually pick solutions

in the objective space window at the click of a mouse button. When the mouse

pointer is navigated over the objective space visualization window, a left

mouse button click will select the glyph which is underneath the mouse

pointer. Once the user has selected a solution, it is highlighted by a bounding

box and several events can then occur. First and foremost, the design

associated with the selected solution is displayed in the decision space win-

dow. This in and of itself is a very useful way to visually correlate how regions

of the objective space map to various types of designs. In addition to display-

ing the selected solution’s corresponding design, the user also has the ability to

extensively probe the data associated with that solution. Users can also

‘‘mark’’ a selected solution, doubling its glyph size and permanently associat-

ing a bounding box with the solution. Marked solutions are always displayed

in the visualization window until they are unmarked by the user. This allows

the user to track various solutions of interest throughout the interactive deci-

sion-making process. Solutions which have been marked can subsequently

be exported to a file, which can then be read back into the software at a later

time to facilitate further comparison.

2.2.3.5. Decision space probing. As mentioned previously, the decision space

component of the VIDEO framework is highly problem specific. However, the

demonstration version of the framework utilizes an LTM design problem

where the objectives are to effectively monitor a contamination plume using

a pre-determined set of well locations while minimizing system cost, error,

and uncertainty. Specific details of the LTM test case used in this study are de-

scribed in Section 2.3. The VIDEO framework represents the LTM decision

space by plotting the available well locations throughout the sampling domain.

Each well location is represented by a transparent cylinder, and within each

cylinder, the actual sampling locations available along the well’s vertical

axis are marked. When a user selects a solution in the objective space, the

wells which are associated with the selected solution are highlighted in red.

If the decision space probing functionality is activated, the selected solution

will be Kriged on-the-fly to produce maps of concentration estimates, estima-

tion error, and estimation uncertainty throughout the sampling domain.

For the LTM test case examined in this study, Quantile Kriging was used to

obtain contaminant estimates throughout the sampling domain by using the

data at the sampled locations. Estimation error was calculated by comparing

the estimates obtained when all sampling locations are utilized, to the data ob-

tained for a particular Pareto-optimal solution in which only a subset of the

data points are utilized. In addition, since Kriging is a minimum error variance

estimator, the local uncertainty associated with each estimate throughout the

sampling domain is also available.

Following Kriging, the user is provided with the ability to interactively

move a probing plane throughout the sampling domain in order to explore

the implications of the design. When using a plane probe, the user can choose

an XeY, XeZ, or YeZ plane depending on the geometry of the decision space

domain. This plane can then be moved throughout the domain either through

the use of a slider bar (available in the decision space tool frame) or by man-

ually moving the plane throughout the domain using the mouse. The plane will

display the underlying data by using red to represent areas of highest esti-

mates, error, or uncertainty (depending on which is selected) and blue to rep-

resent areas of lowest estimates, error, or uncertainty. Data associated with

different objective space solutions can be directly compared using the plane

probe by setting the plane position to some location in the design domain,

and subsequently selecting and comparing various solutions in the objective

space.

An additional probing option allows the user to plot and manipulate a col-

ored iso-surface representing a constant data value throughout the domain. The

data value, which the iso-surface represents, can be controlled through the use

of a slider bar, and the color of the iso-surface changes with changing data

values based on the data range (i.e., red represents high values and blue rep-

resents low values). While a probing plane provides a 2D slice of the decision

space for all data values, an iso-surface provides a volumetric view of the de-

cision space at a constant data value. One useful way in which to utilize the

iso-surface functionality is to explore how the iso-surfaces change at a given

data value for various objective space solutions.

The color mapping of both the plane probe and the iso-surface can be nor-

malized to a minimum and maximum data value through the use of the

‘‘Clamp Lower’’ and ‘‘Clamp Upper’’ color limit check boxes. This ensures

that the color scale used to represent the underlying data is normalized, allow-

ing for efficient and accurate comparison between the maps generated by var-

ious solutions. However, the solutions which should be used to clamp the color

limits are highly problem specific, and often difficult to identify. Taking this

into consideration, the ability to manually clamp the color limits has been
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included within the VIDEO framework. Clamping the color limits ensures that

when navigating the objective space, probed data in the decision space is al-

ways represented on the same color scale, making direct comparison between

various solutions fast and accurate.

2.3. Monitoring test case description

The LTM test case used to demonstrate the VIDEO framework represents

a simulated perchloroethylene (PCE) contamination plume originating from an

underground storage tank. The contaminant plume is based on a hypothetical

50 million node flow and transport simulation (Maxwell et al., 2000) through

actual hydrogeology located at the Lawrence Livermore National Lab (LLNL)

in Livermore, California. The site hydrogeology has been comprehensively

characterized so that the 1-m resolution simulation reflects a highly heteroge-

neous alluvial aquifer. PCE concentration data are available at 25 pre-deter-

mined well sampling locations and there are 1e3 sampling points available

along each of the well’s vertical axes. However, in this study, it is assumed

that if a well is sampled, then all available locations along its vertical axis

are sampled, yielding a total of 25 decision variables (or 225 possible well sam-

pling schemes). The sampling domain extends 690 m in the X direction, 168 m

in the Y direction, and 38.5 m in the Z direction. Additional details of the LTM

test case can be found in Reed et al. (2004).

2.3.1. Design objectives

Four design objectives were chosen for the LTM test case, each of which

was minimized. The design objectives included Cost, Concentration Error

(Conc), Uncertainty (Uncert), and Mass Error (Mass). The ‘‘Cost’’ objective

reflects the normalized cost of sampling the system. There are 25-well loca-

tions with 1e3 sampling locations at each well for a total of 47 available sam-

pling locations. This implies that the ‘‘Cost’’ objective can range from zero (no

locations sampled) to 47 (all locations sampled). The ‘‘Conc’’ objective re-

flects the concentration estimation error between a Kriged map of the plume

utilizing all available sampling locations, and a Kriged map of the plume

which utilizes a subset of the sampling locations. The ‘‘Uncert’’ objective re-

flects the uncertainty associated with the Kriged map of the contaminant

plume by summing the estimation variances attained for each estimation loca-

tion. The ‘‘Mass’’ objective reflects the error between the total mass of PCE

estimated by Kriging the domain based on all available well sampling loca-

tions, and the estimated mass of PCE obtained by Kriging the domain based

on a subset of well sampling locations. Readers interested in the actual equa-

tions used to quantify each of these objectives can refer the publications Kollat

and Reed (2006, 2007).

2.3.2. Spatial interpolation
PCE concentration estimates were obtained at unsampled locations

throughout the sampling domain of the LTM test case using Quantile Kriging

(QK). Kriging provides a minimum error variance estimate of contaminant

concentration at an unsampled location provided the data at the sampled loca-

tions. Quantile Kriging has been chosen in this study based on its effectiveness

in providing high quality plume interpolations despite highly variable PCE

concentrations and preferential sampling (Reed et al., 2004). QK extends Or-

dinary Kriging by transforming contaminant concentrations to quantile space

according to their rank ordering to perform the spatial interpolation (Journel

and Deutsch, 1997). This is done to reduce the influence of extreme concen-

tration values on the mean and variance of the data. KT3D, a three-dimen-

sional Kriging library included as part of the GSLIB software package

available in Fortran (Deutsch and Journel, 1998), was used to perform the

Kriging for this study. A C translation of KT3D developed by the authors

has been integrated into the VIDEO framework to produce on-the-fly spatial

interpolations of the LTM decision space.

Before the Kriging is performed, a variogram analysis is conducted to re-

veal the spatial correlation structure of the data, and a model is chosen which

will best represent this structure when computing estimates (Goovaerts, 1997).

The variogram model chosen for this study was a spherical model with

nugget¼ 0.005 and range¼ 100 m. In this study, estimates were obtained

across a grid defined by 34 blocks in the X domain, 7 blocks in the Y domain,

and 7 blocks in the Z domain, for a total of 1666 estimate locations. QK

assumes a locally stationary concentration mean within local estimation neigh-

borhoods at each grid location. In this study, the shape of the search neighbor-

hood was an ellipsoid where the closest 24 data points within the search

neighborhood were used in estimation calculations. An octant search was

used to help ensure that the closest data points were well distributed about

the estimation point (for more details see Deutsch and Journel, 1998). This

is especially important since the wells for this test case contained multiple

sampling locations along their axes.

2.3.3. Generating the Pareto-set

A very close approximation to the true Pareto-optimal solution set was

generated for the LTM application presented in this paper using a Master-

Slave parallelization of the 3-NSGAII (Tang et al., 2007). A constraint was

placed on the LTM test case such that if a well sampling scheme contained

too few sampling points to fully Krige the entire sampling domain (as defined

by the Kriging parameters described in Section 2.3.2), the scheme was consid-

ered infeasible and was penalized by the algorithm similarly to Kollat and

Reed (2006). The 3-NSGAII was permitted to run for 3.2 million function

evaluations and a Pareto-optimal approximation set containing 2570 solutions

was generated. Previous studies and experience indicate that this approxima-

tion set very likely represents at least 90% of the true Pareto-optimal solution

set (Tang et al., 2007). The Pareto-set generated by the 3-NSGAII contained

solutions with ‘‘Cost’’ ranging from 7 to 47, ‘‘Conc’’ ranging from 0 to

34.4, ‘‘Uncert’’ ranging from 1284 to 1564, and ‘‘Mass’’ ranging from

�10.3 to 3.9 (negative values result because the mass error objective is scaled

using a log transform). This Pareto-optimal solution set is provided for dem-

onstration purposes within the initial version of the VIDEO framework and

is subsequently used to demonstrate the framework throughout the remainder

of this paper. The VIDEO framework has been designed to complement

MOEAs or any other Pareto optimization algorithms.

3. VIDEO case study

3.1. Exploring and understanding objective tradeoffs

Visualizing ‘‘many-objective’’ Pareto-optimal surfaces can
be facilitated by representing three objectives using the tradi-
tional spatial coordinates, and additional objectives by chang-
ing representation characteristics. Representation of additional
objectives can be done in a number of ways including the use
of color, shape, size, and orientation (Balling, 1999; Stump
et al., 2003). For example, in the VIDEO framework, a fourth
design objective is portrayed through the use of color, where
blue indicates low objective values and red indicates high ob-
jective values. The VIDEO framework’s visualization of the
four-objective Pareto-optimal set is shown in Fig. 2A, with
the ‘‘Cost’’, ‘‘Conc’’, and ‘‘Uncert’’ objectives plotted on the
X, Y, and Z axes, respectively, and the ‘‘Mass’’ objective plot-
ted using color. However, as noted in Section 2.2.3, this can
easily be changed through the manipulation of the plotting
axes radio buttons. For example, starting with the configura-
tion shown in Fig. 2A, simply switching the ‘‘Mass’’ objective
to the Z-axis, and the ‘‘Uncert’’ objective to the color axis (see
Fig. 2B) results in a configuration which provides new insight
into the tradeoffs between the objectives because trends in
color emphasize the ‘‘Uncert’’ objective.

It is interesting to note at this point that by solving for the
high-order Pareto-optimal surface for four objectives, all of the
sub-problems based on three objectives, two objectives, or
even a single objective are implicitly solved at the same
time. Non-domination sorting can be performed on the
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Fig. 2. Various examples of how a four-objective Pareto-optimal solution set can be viewed within the VIDEO framework. A shows the full four-objective Pareto-

set with ‘‘Cost’’, ‘‘Conc’’, and ‘‘Uncert’’, plotted on X, Y, and Z, and ‘‘Mass’’ plotted as color. B reverses the ‘‘Uncert’’ and ‘‘Mass’’ objectives such that ‘‘Mass’’ is

plotted on Z and ‘‘Uncert’’ is plotted using color. C shows the two-objective subset CosteConc and D and E show this subset in the context of the full four-ob-

jective set. F shows how a third objective (Cost) can be plotted using color to reveal additional information and insight.
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high-order Pareto-surface in terms of fewer objective subsets.
For example, the two-objective tradeoff between ‘‘Cost’’ and
‘‘Conc’’ is shown in Fig. 2C and is obtained by simply isolat-
ing solutions which dominate the full, high-order Pareto-set
with respect to these two objectives, but are non-dominated
with respect to one another. Fig. 2D shows the ‘‘Cost’’ versus
‘‘Conc’’ non-dominated subset highlighted with the remaining
solutions composing the full four-objective Pareto-set dis-
played using reduced marker sizes with transparency added
(both features which are available within the VIDEO frame-
work). When manipulating the plotting axes within the
VIDEO framework, the user can choose whether the whole
high-order Pareto-set should be displayed (Fig. 2D), or the
non-dominated subset corresponding with the objectives se-
lected for plotting (Fig. 2C) by simply selecting a check box
which tells the software to display the full set, with the current
non-dominated set highlighted. It is also interesting to note
that non-dominated subsets can be viewed in the context of
the full four-objective space. For example, the ‘‘Cost’’ versus
‘‘Conc’’ Pareto subset shown in Fig. 2C and D can be viewed
in the ‘‘Cost’’ versus ‘‘Conc’’ versus ‘‘Uncert’’ versus ‘‘Mass’’
objective space (see Fig. 2E). This can aid in revealing trade-
off relationships between objective subsets, and the high-order
Pareto-optimal space.

Other interesting ways of viewing the Pareto-optimal sur-
face are illustrated in the following examples. The three-
objective Pareto-front associated with ‘‘Cost’’, ‘‘Conc’’, and
‘‘Uncert’’ can be viewed by simply turning the ‘‘Mass’’ objec-
tive off. If viewing the three-dimensional surface associated
with this three-objective Pareto-front is difficult, two of the ob-
jective can be plotted on the X and Y axes, and the third objec-
tive portrayed using color. Any combination of objectives can
be explored in this manner, and color can always be used to
represent any objective. As another example, if ‘‘Conc’’ and
‘‘Uncert’’ are plotted on the X and Y axes, respectively, and
‘‘Cost’’ is plotted using color (see Fig. 2F), the relative distri-
butions of solutions at each cost level can be viewed very
easily.

3.2. Exploring and understanding the design space

Before one begins exploring the LTM decision space, it is
prudent to identify likely solutions with which the color limits
should be clamped so that the color scale used to probe the de-
cision space is normalized (see ‘‘Decision Space Probing’’ in
Section 2.2.3). For the LTM test case explored in this study, it
is anticipated that the highest ‘‘Cost’’ solution (i.e., the solu-
tion which samples from all available locations) will generally
result in the lowest ‘‘Conc’’, ‘‘Uncert’’, and ‘‘Mass’’ objective
values. Thus, the lower color limit was clamped to the
‘‘Cost’’¼ 47 solution. Likewise, the upper color limit was
clamped to a ‘‘Cost’’¼ 7 solution, which is anticipated to
represent the highest ‘‘Conc’’, ‘‘Uncert’’, and ‘‘Mass’’ objective
values.

After normalizing the color limits, the best place to begin
in understanding the LTM test case is to examine the highest
cost solution because this solution will theoretically provide

the most accurate picture of the contamination plume. The
objective values associated with this solution are ‘‘Cost’’¼
47, ‘‘Conc’’¼ 0.0, ‘‘Uncert’’¼ 1284, and ‘‘Mass’’¼ 0.0. The
highest cost solution is marked in Fig. 3A (remember that
the user can simply click on the solution within the objective
space window to make a selection). The Kriged maps associ-
ated with the high cost solution are shown in Fig. 3B through
E. Fig. 3B shows the quantile ranked estimates of the contam-
ination plume using the plane probe at z¼ 85 m. In this figure,
we can clearly see the contaminant source at the southern
boundary of the domain. At this elevation, there is also a region
of high concentration toward the center of the sampling do-
main and a region of high concentration at the northwest
boundary of the sampling domain. It is useful to note at this
point that the plane probe can be moved throughout the sam-
pling domain. Its current location (z¼ 85 m) was chosen for
illustrative purposes because it provides a good picture of
the contaminant source, the general shape of the plume, and
several other areas of high concentration that may be of inter-
est. Fig. 3C displays an iso-surface plotted at quantile concen-
tration estimates of 0.70. Again, this data value was chosen
somewhat arbitrarily, but to a large extent because it represents
a relatively high quantile estimate (or spatial volumes contain-
ing high PCE concentrations). The estimation error is shown
in Fig. 3D at the same elevation used in B. The estimation er-
ror is quantified as the difference between the estimates ob-
tained by sampling from all locations, and the estimate
obtained using a subset of sampling locations. Since the high-
est cost solution (i.e., all locations are sampled) has been se-
lected in this case, the error is zero throughout the domain.
The estimation uncertainty is shown in Fig. 3E at z¼ 85 m.
In this figure, the uncertainty is very low near the contamina-
tion source at the southern boundary of the domain (because of
the preferential sampling which occurs in this region). In addi-
tion, the uncertainty is low around each sampling location be-
cause Kriging is an unbiased estimator (meaning that the
estimates are true to the data values at the sampled locations).
The area of highest uncertainty occurs at the north-east bound-
ary of the domain where there are no well sampling locations
available.

In order to demonstrate the VIDEO framework’s ability to
effectively combine visualization and interaction, a compro-
mise solution is selected from the remaining 2569 Pareto-op-
timal designs. As shown in Fig. 2B, plotting ‘‘Uncert’’ as color
and ‘‘Mass’’ on the Z-axis emphasizes ‘‘Uncert’’ trends which
may not otherwise be apparent. This plotting configuration
was utilized in Fig. 3E to select a compromise solution for
comparison to the highest cost solution selected previously.
The interactive plotting limits window was adjusted to display
solutions between ‘‘Cost’’¼ 16 to 32, ‘‘Conc’’¼ 3.3 to 17.7,
and ‘‘Mass’’¼�3.5 to 3.9. In addition, the precision adjust-
ment feature was used to ‘‘thin’’ the objective space, making
it easier to locate a compromise solution. The precision set-
tings for each objective were ‘‘Cost’’¼ 2.0, ‘‘Conc’’¼ 2.0,
‘‘Uncert’’¼ 5.0, and ‘‘Mass’’¼ 2.0. These settings were se-
lected to thin the space based on the nominal ranges of
each design objective. After selecting and comparing several
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solutions from the Pareto-set subject to the above constraints,
the solution shown in Fig. 3F was selected for comparison be-
cause of its desirable characteristic of providing a fairly accu-
rate picture of the plume but at a lower cost. The selected
solution represents the objective values: ‘‘Cost’’¼ 23,
‘‘Conc’’¼ 8.79, ‘‘Uncert’’¼ 1354, and ‘‘Mass’’¼ 2.78. Com-
pared to the high cost solution examined previously, this rep-
resents a 60% decrease in ‘‘Cost’’, but only a 25% increase in
‘‘Conc’’ and ‘‘Uncert’’ and a 20% increase in ‘‘Mass’’. The
concentration estimates, estimation error, and associated un-
certainty are shown in Fig. 3G through J (similarly to
Fig. 3B through D). Fig. 3G shows that this particular solution
seems to capture the source of the contamination relatively
well. However, the solution tends to overestimate the contam-
inant concentration at the northwest boundary of the plume
and underestimate the concentration at the center-west bound-
ary. Fig. 3H provides insight into the volumetric data associ-
ated with this solution. In comparing Fig. 3C with H, the
iso-surfaces plotted at quantile concentration estimates of
0.7 differ widely between the two solutions. However, both so-
lutions do reveal the high contaminant concentration, which
occurs near the center of the domain, mostly because the
well at this location is sampled in the second solution and
the adjacent wells are not. The estimation error presented in
Fig. 3I further reveals this overestimation at the northwest
boundary. In addition, high error in the southwest corner can
be observed in Fig. 3I. Moving back to Fig. 3G reveals that

this solution does not capture what appears to be an area of
high concentration just west of the source. The uncertainty
map shown in Fig. 3J shows band-like region of very high un-
certainty occurring at the north-east corner of the domain.

The reader should again note that the VIDEO framework
allows for interactive probing of the entire volume of the de-
cision space. In the above example, relocation of the probing
planes may reveal characteristics of the comparison solution
(shown in Fig. 3F), which make it more (or less) desirable
as a possible compromise solution. Generally, the objective
of selecting and comparing solutions would be to find a lower
cost solution which accurately represents important aspects of
the contamination plume while remaining within acceptable
error and uncertainty bounds throughout the sampling domain.
The VIDEO framework provides a solution marking feature
which allows the user to mark (and unmark) solutions as
they are navigating the objective space. Solutions which
have been marked are doubled in size and are bounded with
a user specified color. In addition, solutions which have been
marked are locked for visualization, meaning that they will
never be turned off (unless the user ‘‘unmarks’’ them) regard-
less of whether or not they are within the plotting limits, or
within the precision specification, or dominated by a subse-
quent non-domination subset sort. This allows the user to effi-
ciently search the space in a variety of ways, all the while
tracking solutions of interest. A solution export feature then al-
lows the user to export the marked solutions to a file which can

Fig. 3. Example of solution comparison and decision space probing functionality of the VIDEO framework. A and F show alternative views of the locations of the

two selected solutions in the objective space. B and G show the associated plume estimates at z¼ 85 m. C and H show an iso-surface plotted at concen-

tration¼ 0.70. D and I display the estimation error at z¼ 85 m. E and J show the spatial extent of estimation uncertainty at z¼ 85 m.
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subsequently be read back into the software to further refine
the selections. This process of selection and refinement is re-
ferred to as negotiated design selection and is illustrated in
Section 3.3.

3.3. Negotiated design selection

The process of selecting various solutions of interest and
subsequent refinement based on decision maker preferences
is referred to as negotiated design selection. In this section,
this process will be illustrated using one approach, although
many others are possible because the VIDEO framework pro-
vides a multitude of visualization tools which can provide
many means of selecting interesting solutions. We begin by
identifying two-objective subsets of the larger four-objective
LTM test case. The two-objective tradeoff representing
‘‘Cost’’ versus ‘‘Conc’’ (CosteConc) is shown in Fig. 4A.
The solutions in this figure have been marked in red using
the ‘‘Mark Non-Dominated Subset’’ option available under
the ‘‘Objective Space Tools’’ menu. The color used to mark
the solutions can be specified under the ‘‘Mark Solution’’ but-
ton available in the objective tools. Keeping the CosteConc
tradeoff solutions marked from the previous set, the two-ob-
jective CosteUncert tradeoff is shown in Fig. 4B as solutions
marked in green. This process can be repeated for all possible
two-objective tradeoff subsets: CosteMass, ConceMass, and
UncerteMass. Fig. 4C shows all of the two-objective tradeoffs
marked within the CosteConc space as shown in Fig. 4A
where the CosteConc tradeoff is marked in red, the CosteUn-
cert tradeoff in green, the CosteMass tradeoff in blue, the
ConceMass in purple, and the UncerteMass in orange. If
you look closely at Fig. 4A through C, you will see that
some solutions which are highlighted occur on more than
one two-objective tradeoff. The VIDEO framework handles
this by placing multiple marking boxes around solutions which
occur on multiple non-dominated subsets. This allows the user
to quickly identify intersections which exist between multiple
tradeoffs.

At this point, all two-objective LTM tradeoffs have been
identified and marked within the full four-objective test case.
Manipulating the plotting axes within the framework allows
us to see what these tradeoffs look like in the context of the
full four-objective space. Fig. 4D shows the full four-objective
Pareto-set plotted similarly to Fig. 2A with ‘‘Cost’’, ‘‘Conc’’,
and ‘‘Uncert’’ plotted on the spatial axes and ‘‘Mass’’ repre-
sented by the color of the solutions (where blue represents
low ‘‘Mass’’ and red is high ‘‘Mass’’). In Fig. 4D only the
marked solutions are highlighted and the remaining solutions
are shown in the background for locational perspective. One
of the most interesting features identified from this figure is
that the solutions within the CosteConc tradeoff (red) and
the CosteUncert tradeoff (green) generally have very high
‘‘Mass’’ error (red) solutions. Another very interesting feature
is that the solutions between these tradeoffs appear as a geo-
metric compromise region. In addition, based on the color of
the actual solutions in the compromise region, it appears that
they generally exhibit a lower ‘‘Mass’’ error (more blue and

green solutions) than the CosteConc and CosteUncert trade-
offs. These compromise solutions which are shown in closer
detail and marked in Fig. 4E are now the focus of further
investigation.

Fig. 4E focuses the objective space window on three solu-
tions of particular interest which have been identified as com-
promise solutions between the CosteConc and CosteUncert
tradeoffs. These solutions are also marked in Fig. 4D to pro-
vide a reference of where they are located in the full four-ob-
jective space. First we will focus on the dark blue solution
(labeled 1) which represents the lowest ‘‘Mass’’ objective
value. In Fig. 4E, solution 1 intersects the CosteMass, the
ConceMass, and the UncerteMass tradeoffs. Remember
that the VIDEO framework provides a means of identifying
this by retaining multiple bounding boxes of various colors in-
dicating that the solution is intersected by multiple tradeoffs.
The objective values expressed as a percentage of the maxi-
mum objective value of this solution are shown in column
one of Table 1. Solution 1 shown in Fig. 5A reduces sampling
costs by 30% while only increasing concentration estimation
error by 20% and uncertainty by 14%, while the increase in
mass estimation error is actually very close to 0%. The relative
reduction of each of the objectives’ values for the second and
third solutions highlighted in Fig. 4E is also shown in Table 1.
In the table, each of the solutions 1-3 is associated with a cor-
respondingly lower ‘‘Cost’’. However, the solution which sam-
ples from 33 points in the domain actually has a lower ‘‘Conc’’
error value than the solution which samples from 35 points. In
addition, the ‘‘Cost’’¼ 33 solution is also better than the
‘‘Cost’’¼ 35 solution in terms of the ‘‘Uncert’’ objective.
Even more interesting is the fact the third solution which sam-
ples from only 32 points yields even further improvements in
the ‘‘Uncert’’ objective. In terms of the ‘‘Mass’’ objective, the
third solution presents a compromise between the ‘‘Mass’’ er-
ror of the first and second solutions.

Now that the relative magnitudes of the objective values for
the three solutions have been compared, their corresponding
maps of concentration estimates, estimation error, and estima-
tion uncertainty can be probed and compared using VIDEO’s
design space features. Fig. 5 presents these maps for each of
the three solutions compared (rows 1-3 of Fig. 5) as well as
the maps produced when all available well locations are sam-
pled (designated by the row labeled ‘‘Full Cost’’). Similarly to
Fig. 3, each plane probe is positioned at elevation z¼ 85 m,
and the iso-surface is plotted at a quantile concentration value
of 0.7. In comparing the contaminant estimate planes of the
three solutions, solution 2 appears to produce a map which
most closely represents the information provided by the full
test case. However, shifting to an iso-surface view (column 2
of Fig. 5) reveals that the volumetric extent of high concentra-
tions as predicted by solution 2 is underestimated. Comparing
the estimation error maps in column 3 of Fig. 5 reveals that
solution 1 exhibits the lowest error at z¼ 85 m. However,
moving to the uncertainty map associated with solution 1 re-
veals a region of very high uncertainty present at the north
end of the domain because the well at this boundary is not
sampled in this solution. This likely indicates a preference
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Fig. 4. Negotiated design selection within the VIDEO framework using two objective subsets of the larger four-objective problem. A shows the tradeoff Coste

Conc marked in red and B, the tradeoff CosteUncert marked in green. C shows the other two-objective subsets CosteMass, ConceMass, and UncerteMass

marked in blue, purple, and orange, respectively. D shows the marked two-objective subsets in the context of the full four-objective space. E shows the selection

of three solutions of interest, which are explored more fully in the negotiated design selection section of the study.
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for solution 2 since quantifying the extents of the contamina-
tion is important. Comparing the uncertainty maps of solutions
2 and 3 reveals a preference toward solution 2 since the uncer-
tainty generally decreases throughout many portions of the do-
main. Based on the above analysis, either solutions 1 or 2
could be suitable as a negotiated design. In addition, it is inter-
esting to note that solution 2 may have been difficult to locate
using traditional tools because it is not a solution which is in-
tersected by any of the two-objective tradeoff subsets. How-
ever, the VIDEO framework provided an efficient means of
locating this solution which would certainly be of interest to
a decision maker.

4. Discussion

Tools such as MOEAs are allowing engineers and scientists
to solve ‘‘many-objective’’ problems (Fleming et al., 2005)
through the generation of high dimensional Pareto-optimal solu-
tion sets. Relative to traditional multicriterion decision methods,
MOEAs inherently shift methodological focus toward the chal-
lenges posed by providing decision makers with the ability to
explore and understand large tradeoff solution sets. Our devel-
opment of the VIDEO framework is based on the hypothesis
that design expertise and interactive visualization of both objec-
tive tradeoffs and their design space consequences can maxi-
mize the value and validity of using MOEAs as a posteriori
decision tools. Although exact quantitative metrics can be
used to assess the quality of MOEA search (Zitzler et al.,
2003; Kollat and Reed, 2006; Tang et al., 2007), it is much
more subjective to judge the value of high-order Pareto-optimal
sets in the design and decision-making process.

However, the results in Figs. 2e5 do demonstrate how the
VIDEO framework can allow environmental engineers and
scientists to better understand LTM tradeoffs while seeking
a negotiated compromise solution. Perhaps the most interest-
ing result in the prior section is the demonstration that the
two-objective CosteUncert and CosteConc tradeoffs bound
a compromise region in the four-objective space (see
Fig. 4D). The value of the compromise region within the
full four-objective space is particularly interesting given that
to date, a vast majority of environmental applications using
MOEAs have focused on two-objective formulations due to
their simple interpretations as well as their reduced computa-
tional constraints. As demonstrated in Fig. 4D, the two-objec-
tive non-dominated sets by themselves do not capture the full
range of design alternatives available. This study demonstrates
that as we overcome the computational constraints posed by

representing our problems with ‘‘many-objective’’ formula-
tions, we should also advance our ability to move beyond tra-
ditional two-objective costebenefit analyses.

High-order Pareto optimization supports emerging decision
and design philosophies that seek to allow experts and deci-
sion makers to ‘‘shop’’ (Balling, 1999) through sets of ‘‘alter-
native’’ solutions that will promote design innovations and
provide decision makers with an improved understanding of
system behaviors. Moreover, our ability to mathematically ab-
stract design into a suite of functions or norms that represent
our design or decision support objectives is limited. It is inev-
itable that some aspects of performance or design will be un-
modeled but remain important in the decision process
(Loughlin et al., 2001). The VIDEO framework synergistically
supports decision makers in better understanding modeled and
unmodeled objectives by allowing decision makers to interac-
tively explore high dimensional objective spaces with large so-
lution sets to understand their design tradeoffs while also
providing spatial analysis of the design consequences of the
LTM tradeoffs.

As noted in Section 2.2, the VIDEO tool has been devel-
oped within a general object-oriented Python programming
framework. Although this study has demonstrated the VIDEO
framework on a LTM application, the tool can be readily adap-
ted to other applications. The objective space probing tools are
general and can be very easily adapted to any multi-objective
application. The largest challenge and potential limit in apply-
ing the VIDEO framework is to develop appropriate probing
tools and visualizations for designs or decisions (maps, movies,
three-dimensional mesh representations, etc). For each new
application area, the combination of powerful, full featured
scripting languages like Python with advanced visualization
tools such as the VTK provides a set of general tools for
developing very complex visualizations and animations. For
applications using Geographic Information Systems and com-
putationally expensive design simulators (e.g., Bekele and
Nicklow, 2005), on-the-fly probing of designs would require
that the Pareto-optimal solutions be simulated offline with
their relevant output saved in appropriate file formats. The out-
put files could then be quickly interrogated using decision
space probing tools.

The VIDEO framework presented in this study demonstrates
the need and value for environmental and water resources pro-
fessionals to consider high-order Pareto optimization as a new
problem class. MOEAs when combined with advanced visuali-
zation tools can serve to elucidate complex and potentially un-
known dependencies between our objectives (both modeled
and unmodeled) for environmental systems. Moreover, the envi-
ronmental area is clearly being shaped by the emergence of spa-
tiotemporal simulation and statistical tools that are closely
coupled with geospatial information systems and geodatabases
to support integrated assessment and management of impacted
systems (deVoil et al., 2006; Dorner et al., 2007; Schlüter and
Rüger, 2007). The emergence of these tools further supports
the value and need for a posteriori decision tools that couple ad-
vanced visualizations and MOEAs (for an excellent example see
Bekele and Nicklow, 2005).

Table 1

Summary of objective values expressed as a percentage of the maximum for

each of the three solutions chosen as negotiated designs

Three solutions

of interest

1st (%) 2nd (%) 3rd (%)

‘‘Cost’’ as percentage of maximum 70 65 63

‘‘Conc’’ as percentage of maximum 20 17 24

‘‘Uncert’’ as percentage of maximum 14 13 10

‘‘Mass’’ as percentage of maximum 0 24 13
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Fig. 5. VIDEO comparison of solutions 1-3, which were selected for further consideration. Columns 1-4 of the figure represent the concentration estimates at

z¼ 85 m, a concentration iso-surface at 0.70, and Kriging error and uncertainty at z¼ 85 m, respectively. The first row of the figure represents the maps associated

with the highest cost solution and the remaining rows, the maps associated with solutions 1-3, respectively.
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5. Conclusions

This study presents a framework for Visually Interactive
Decision-making and Design using Evolutionary Multi-objec-
tive Optimization (VIDEO). The VIDEO framework has been
developed to affirm the need and value of combining interac-
tive visualization with high-order Pareto optimization for im-
proved a posteriori decision-making as demonstrated in this
study using a long-term groundwater monitoring design appli-
cation. The core of the VIDEO framework has been developed
using the Python programming language. The VIDEO frame-
work has been developed using Tkinter (Python’s standard
GUI package), which is built on top of Tcl/Tk and is portable
across Windows, Unix, and Mac platforms. Aside from Py-
thon’s ease-of-use and GUI development capabilities, it also
allows for easy integration with other, lower level (i.e., faster)
languages such as C and Cþþ. The VIDEO framework takes
advantage of this capability by utilizing the Visualization
ToolKit (Schroeder, 2001), which provides the VIDEO frame-
work with fast visualization rendering and excellent interac-
tion capabilities. The VIDEO framework allows users to
visually navigate large multi-objective solution sets while aid-
ing decision makers in identifying one or more optimal de-
signs. Specifically, the interactive visualization framework is
intended to provide an innovative exploration tool for high-or-
der Pareto-optimal solution sets (i.e., solution sets for three or
more objectives).

The framework is demonstrated for a long-term groundwa-
ter monitoring application in which users can explore and
visualize tradeoffs for up to four design objectives, simulta-
neously. Interactive functionality within the framework allows
the user to select solutions within the objective space and
visualize the corresponding monitoring plan’s performance
in the design space. If a spatial estimation algorithm is used
in the design objective formulation (e.g., in this study, Quan-
tile Kriging was used to provide interpolated maps of contam-
inant concentration estimates, and their associated error and
uncertainty), the estimation can be performed on-the-fly
when a solution is selected and the corresponding maps can
then be displayed in the decision space. Although Quantile
Kriging is used to demonstrate the framework, it should be
noted that it is adaptable to any spatiotemporal evaluation of
LTM designs (e.g., interpolators, smoothers, or filters). This
functionality provides the user with a holistic picture of the in-
formation provided by a particular solution, ultimately allow-
ing them to make a more informed decision. In addition, the
ease with which the framework allows users to navigate and
compare solutions as well as design tradeoffs leads to a time
efficient analysis, even when there are thousands of potential
solutions.

Acknowledgements

The authors of this work were partially supported by the
United States National Science Foundation under the CA-
REER grant CBET-0640443. Any opinions, findings and con-
clusions or recommendations expressed in this paper are those

of the writers and do not necessarily reflect the views of the
United States National Science Foundation. The authors
would also like to acknowledge Dr. Raymon Masters of
Penn State’s Graduate Education and Research Services
(GEaRS). Ray’s visualization and VTK expertise was instru-
mental in providing us the necessary tools to begin developing
the VIDEO framework.

References

Arrow, K., 1963. Social Choice and Individual Values. Yale University Press,

New Haven, CT.

Back, T., Fogel, D., Michalewicz, Z., 2000. Handbook of Evolutionary Com-

putation. IOP Publishing Ltd and Oxford University Press, Bristol, UK.

Balling, R., 1999. Design by shopping: a new paradigm. In: Proceedings of the

Third World Congress of Structural and Multidisciplinary Optimization,

Buffalo, NY, pp. 295e297.

Bekele, E.G., Nicklow, J.W., 2005. Multiobjective management of ecosystem

services by integrative watershed modeling and evolutionary algorithms.

Water Resources Research 41, W10406, doi:10.1029/2005WR004090.

Castelletti, A., Soncini-Sessa, R., 2006. A procedural approach to strengthen-

ing integration and participation in water resource planning. Environmen-

tal Modeling & Software 21 (10), 1455e1470.

Chankong, V., Haimes, Y., 1983. Multiobjective Decision Making: Theory and

Methodology. North-Holland, New York, NY.

Chun, W.J., 2006. Core Python Programming, second ed. Prentice Hall PTR,

New York, NY.

Cieniawski, S.E., Eheart, J.W., Ranjithan, S.R., 1995. Using genetic algo-

rithms to solve a multiobjective groundwater monitoring problem. Water

Resources Research 31 (2), 399e409.

Coello Coello, C., Van Veldhuizen, D.A., Lamont, G.B., 2002. Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Pub-

lishers, New York, NY.

Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library

and User’s Guide. Oxford University Press, New York, NY.

Dorner, S., Shi, J., Swayne, D., 2007. Multi-objective modelling and decision

support using a Bayesian network approximation to a non-point source

pollution model. Environmental Modeling & Software 22 (2), 211e222.

Erickson, M.A., Mayer, A., Horn, J., 2002. Multi-objective optimal design of

groundwater remediation systems: application of the niched Pareto genetic

algorithm (NPGA). Advances in Water Resources 25 (1), 51e56.

Farina, M., Amato, P., 2002. On the optimal solution definition for many-cri-

teria optimization problems. In: Keller, J., Nasraoui, O. (Eds.), Proceedings

of the 2002 NAFIPS-FLINT International Conference. IEEE Service Cen-

ter, Piscataway, New Jersey, pp. 233e238.

Farmani, R., Savic, D.A., Walters, G.A., 2005. Evolutionary multi-objective

optimization in water distribution network design. Engineering Optimiza-

tion 37 (2), 167e183.

Fleming, P.J., Purshouse, R.C., Lygoe, R.J., 2005. Many-objective optimization:

an engineering design perspective. In: Coello Coello, C., Hernandez, A.,

Zitzler, E. (Eds.), Evolutionary Multi-Criterion Optimization. Springer Lec-

ture Notes in Computer Science, Guanajuato, Mexico, pp. 14e32.

Flynt, C., 2003. Tcl/Tk: A Developer’s Guide, second ed. Morgan Kaufmann,

New York, NY.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Publishing Company, Reading, MA.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford

University Press, New York, NY.

Haimes, Y., 1998. Risk Modeling, Assessment, and Management. John Wiley

& Sons, Inc., New York, NY.

Halhal, D., Walters, G.A., Ouazar, D., Savic, D.A., 1997. Water network reha-

bilitation with structured messy genetic algorithm. Journal of Water Re-

sources Planning and Management 123 (3), 137e146.

Horn, J., Nafpliotis, F., 1993. Multiobjective Optimization Using the Niched

Pareto Genetic Algorithm. IlliGAL Report No. 93005. University of Illi-

nois, Urbana, IL.

1703J.B. Kollat, P. Reed / Environmental Modelling & Software 22 (2007) 1691e1704



Author's personal copy

Journel, A.G., Deutsch, C.V., 1997. Rank order geostatistics: a proposal for

a unique coding and common processing of diverse data. In: Baafi, E.Y.,

Schofield, N.A. (Eds.), Proceedings of the Fifth International Geostatistics

Congress. Kluwer Academic Publishers, Wollongton, Australia.

Keeney, R., Raiffa, H., 1976. Decisions with Multiple Objectives. Wiley, New

York, NY.

Keeney, R.L., Raiffa, H., 1993. Decisions with Multiple Objectives: Prefer-

ences and Value Trade-offs. Cambridge University Press, Cambridge, UK.

Kollat, J.B., Reed, P., 2006. Comparing state-of-the-art evolutionary multi-ob-

jective algorithms for long-term groundwater monitoring design. Advances

in Water Resources 29 (6), 792e807.

Kollat, J.B., Reed, P.M., 2007. A computational scaling analysis of multiobjec-

tive evolutionary algorithms in long-term groundwater monitoring applica-

tions. Advances in Water Resources 30 (3), 408e419.

Kumar, S.V., Ranjithan, S.R., 2002. Evaluation of the constraint method-based

multiobjective evolutionary algorithm (CMEA) for a three-objective opti-

mization problem. In: Langdon, W.B., et al. (Eds.), Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECCO 2002). Morgan

Kaufmann, New York, NY, pp. 431e438.

Laumanns, M., Thiele, L., Deb, K., Zitzler, E., 2002. Combining convergence

and diversity in evolutionary multiobjective optimization. Evolutionary

Computation 10 (3), 263e282.

Loughlin, D.H., Ranjithan, S.R., Baugh Jr., J.W., Brill Jr., E.D., 2000.

Application of genetic algorithms for the design of ozone control

strategies. Journal of the Air and Waste Management Association 50,

1050e1063.

Loughlin, D.H., Ranjithan, S.R., Brill Jr., E.D., Baugh Jr., J.W., 2001. Genetic

algorithm approaches for addressing unmodeled objectives in optimization

problems. Engineering Optimization 33, 549e569.

Maxwell, R., Carle, F.S., Tompson, F.B., 2000. Contamination, Risk, and Het-

erogeneity: On the Effectiveness of Aquifer Remediation. Livermore, CA.

Mecham, M., October 1997. Raytheon Integrates Product Development. Avi-

ation Week & Space Technology 6, 50.

Moss, M.E., 1979. Some basic considerations in the design of hydrologic data

networks. Water Resources Research 15 (6), 1673e1676.

de Neufville, R., 1990. Applied Systems Analysis: Engineering Planning and

Technology Management. McGraw-Hill Publishing Company, New York,

NY.

Pareto, V., 1896. Cours D’Economie Politique. Rouge, Lausanne.

Reed, P., Ellsworth, T., Minsker, B.S., 2004. Spatial interpolation methods for

nonstationary plume data. Ground Water 42 (2), 190e202.

Reed, P., Kollat, J.B., Devireddy, V., 2007. Using interactive archives in evo-

lutionary multiobjective optimization: a case study for long-term ground-

water monitoring design. Environmental Modeling & Software 22 (5),

683e692.

Reed, P., Minsker, B.S., 2004. Striking the balance: long-term groundwater

monitoring design for conflicting objectives. Journal of Water Resources

Planning and Management 130 (2), 140e149.

Reed, P., Minsker, B.S., Goldberg, D.E., 2001. A multiobjective approach to

cost effective long-term groundwater monitoring using an Elitist Nondomi-

nated Sorted Genetic Algorithm with historical data. Journal of Hydroin-

formatics 3 (2), 71e90.

Ritzel, B.J., Eheart, J.W., Ranjithan, S.R., 1994. Using genetic algorithms to

solve a multiple objective groundwater pollution containment problem.

Water Resources Research 30 (5), 1589e1603.

Salomon, R., 1998. Evolutionary algorithms and gradient search: similarities

and differences. IEEE Transactions on Evolutionary Computation 2 (2),

45e55.
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